tetracom

Technology Transfer in Computing Systems

D3.50: Individual TTP50 abstract

Project no.:

Funding scheme:

Start date of the project:
Duration:

Work programme topic:

Deliverable type:

Deliverable reference number:

WP and tasks contributing:
Due date:
Actual submission date:

Responsible Organization:
Dissemination Level:
Revision:

609491
Collaborative project
1% September 2013
36 months
FP7-1CT-2013-10

Report

ICT-609491 / D3.50
WP 3/ all
31/07/2016
25/07/2016

IMPERIAL
Public
1.0

TETRACOM D3.50: FPGA Acceleration of Stencil Computation

Tim Todman, Wayne Luk (Imperial College London), Paul Grigoras (Corerain Technologies Ltd. UK)

Stencil computation refers to a class of iterative operations to update array data with a fixed pattern, known as
a stencil. Stencil computations are commonly used in (1) simulating dynamic systems, such as fluid dynamics
and heat diffusion, as well as in solving Partial Differential Equations (PDEs), (2) image processing applications,
and (3) deep learning algorithms such as Convolutional Neural Network (CNN). As shown in Figure 1, since
neighbouring data in multiple dimensions are required for each computation, spatial locality reduces as the
dimension size and the number of dimensions increase. Limited by the sparse data access patterns,
performance of stencil computations is limited to 1.8 GFLOPS on a 4-core Intel i7-870 CPU for a fifth-order
stencil. Propagating the stencil for 1000 time steps in 1024*1024*1024 space requires 63.4 Tera floating-point
operations, and takes 10 hours to finish. The high-performance requirements limit the usage of stencil
computations in scientific research and industrial development.

Stencil
Movement

Input

/

Compute

2D Stencil [T} [|

b

Figure 1. A 2D stencil computation example.

In this TTP, we focus on designing hardware acceleration and compiler support for stencil computation. The
challenges include addressing:

e Slow computation: the limited performance of stencil computation limits the efficiency of dynamic
system simulation, image processing, and deep learning applications.

e Low productivity: customized hardware architectures, while provide higher performance, are time-
consuming to develop.

e Low flexibility: one customized hardware architecture cannot fit all stencil-based applications due to
various data size and data type preference.

Example parametric design

Scripting System .
Hardware Architectures
User Requirements Pipelined

— Scripting System 1 HIH Operator,
e Parametric stencil size Stage 1
List of cores | desired cores Parametric data width
- Each core has

arguments:ype, | Parametric operators =0 - - - T 0 - ==

size, latency,) . \

datatypes Integer, Floating point Stage 2
- Generates cores

including balancing Portable, scaleable

delays for . ; c 1 Y

synemonzing data | Pipelined and Combinatorial [J_L]
- Scripts inside =

Vivado HLS Hardware Implementations _ :

- Design is portable
Instantiated d Id target . H
@ cores | othersystems | Parametric Verilog
] - Output: generated o—0
: - Hardears cores for user Use optimized cores
- Design design Scripted in Vivado HLS

Figure 2. Tool flow overview.

Corerain Technologies, as a leading provider of real-time data analytic solutions, faces the challenge of
supporting stencil computation efficiently in hardware and from high-level descriptions. The purpose of the TTP
is to investigate the use of the Imperial College Custom Computing Group’s customized stencil hardware
architectures in developing Corerain Technologies’ real-time data analytic solutions. The general goals are to
improve the performance, productivity and flexibility of stencil hardware architectures.

During this TTP, a simulation platform is built to support the verification and the performance measurements
of developed stencil hardware architectures. As shown in Figure 2, an automatic architecture generation
system is developed to customize low-level hardware architectures based on user requirements. This improves
productivity as well as flexibility for developing stencil applications. In order to generate high-performance
architectures, the arithmetic operators are pipelined for maximum throughput. The supported user
specification includes: stencil size, data width, data type and arithmetic operator implementation. As illustrated
in the figure, the architecture generation process includes:

e Capture stencil computation cores from high-level applications.

e Combine user specifications and captured stencil computation cores, to configure hardware module
properties.

e Optimize the initial hardware modules to reduce design resource usage, pipeline arithmetic operators,
and to balance delays for synchronizing data.

e Generate the optimized stencil architecture in Verilog HDL, as a portable hardware module.

This turns out to be good practice to see if the academic research results could be applied in industrial
environments — some extensions are made to accommodate Corerain specific requirements. In the TTP, the
Custom Computing Research group has successfully integrated the automatic architecture optimization and
generation process into the Corerain Streaming Insight System.

