tetracom

Technology Transfer in Computing Systems

D3.13: Individual TTP13 abstract

Project no.:

Funding scheme:

Start date of the project:
Duration:

Work programme topic:

Deliverable type:

Deliverable reference number:

WP and tasks contributing:
Due date:
Actual submission date:

Responsible Organization:
Dissemination Level:
Revision:

609491
Collaborative project
1% September 2013
36 months
FP7-1CT-2013-10

Report

ICT-609491 / D3.13
WP 3/ all
30/04/2015
30/06/2015

CTUNING
Public
1.0

TETRACOM D3.13: Collective Mind for ARM (collaborative, systematic
and reproducible benchmarking and optimization of computer
systems)

Grigori Fursin (cTuning foundation), Anton Lokhmotov and Ed Plowman (ARM)

Designing, modeling and benchmarking of computer systems in terms of performance, power consumption,
size, reliability and other characteristics is becoming extraordinary complex and costly. This is due to a large
and continuously growing number of available design and optimization choices, lack of common performance
analysis and optimization methodology, and lack of common ways to create, preserve and reuse vast design
and optimization knowledge. As a result, optimal characteristics are achieved only for a few ad-hoc
benchmarks while often leaving real-world applications underperforming. Eventually, these problems lead to a
dramatic increase in the development, optimization and maintenance costs, increasing time to market for new
products, eroding return on investment (ROI), and slowing down innovation in computer engineering.

ARM is the UK based and world's leading semiconductor intellectual property (IP) supplier and as such is at the
heart of the development of digital electronic products. Over 60 billion ARM based chips have been shipped to
date in the world. Some of ARM’s most tedious, time consuming and ad-hoc tasks include benchmarking and
optimization of the new processor designs. The purpose of this TTP is to investigate how cTuning foundation's
open-source technology including the latest BSD-licensed Collective Knowledge Framework (2nd version of
Collective Mind framework) can solve some of the above problems via

e unification, automation and crowdsourcing of performance analysis, optimization and run-time
adaptation of continuously shared and realistic programs and data sets from the community across
new ARM heterogeneous architectures using LLVM compiler in terms of performance, power
consumption, code size and any other exposed characteristic;

e automatic, machine-learning based, multi-objective optimization (performance, energy, accuracy, size,
faults) of various realistic user applications instead of outdated benchmarks;

e improvement of the efficiency of the internal R&D process by decreasing fragmentation of
development, benchmarking and optimization efforts;

e reduction of the time to market for the new processors and increase return on investment.

Experiments————————— =
,,,,,,,,,,,,,,, :
o .
Tool By, [\ Ad-hoc A Collection of
T B /
l ToolB,, | %7 analysisand CSV, XLS, TXT
\ learning scripts and other files
[Tool Byy | 1 BRI
'
byl AP P s T
Unified i CK module (wrapper) with unified and formalized input and output 1
[} 1
"ﬁg‘; :’s’i‘j‘ i Unified JSON Action function Unified E Formalized function (model)
i I .
| input (meta-data) || ISON | of a component behavior
' output |
E g environment (meta-data) E n [a [
ic -, R8N
L E tool version _ | blal=B(c|ulflal.5|m|)
])
Original | § Parse i :
""”f’l,“f"f hed E a and unify — E » . . .
ad-hac
' ool |- | N | Flttened s5oN
input i i latten vectars
e P ! : (either string categories
<L T ; or integer/float values)

Chaining CK components (wrappers) to an experimental pipeline for a given research and experimentation scenario

'
'
- "
' "
! i
! Choose Generate choices (code Compile Run Test Pareto Modeling Complexity !
exploration sample, data set, compiler, source code behavior filter and reduction v

i strategy flags, architecture ...) code nermality prediction ¢
L"‘-‘Lﬂ—‘?_‘:_‘:_‘_‘_:_ ———— ——— —— e e et i e
Public modular auto-tuning and machine -7 Tl Unified g) g) g) g)
learning repository and buildbot Shared scenarios from past research web services Interdisciplinary crawd

Collective Knowledge Framework (http://github.com/ctuning/ck) allows engineers gradually implement light-
weight wrappers around any software piece (benchmarks or realistic application) with more than one
implementation or optimization choice available. These wrappers are connected with Collective Knowledge
repository (JSON-based web service with Hadoop-based database) to continuously monitor all important
characteristics of these pieces (treated as computational species) across numerous hardware configurations
(mobile devices, architecture simulators in a cloud, etc) together with randomly selected optimizations.

Similar to natural sciences, we can now continuously track all winning solutions (optimizations for a given
hardware such as compiler flags, OpenCL/CUDA/OpenMP/MPI/skeleton parameters, number of threads and
any other exposed by users) that minimize all costs of a computation (execution time, energy spent, inaccuracy,
code size, failures, memory and storage footprint, optimization time, contentions, and so on) of a given species
on a Pareto frontier along with any unexpected behavior. Furthermore, engineers can work with data scientists
to continuously classify solutions, prune redundant ones, and correlate them with various features of software,
its inputs (data sets) and used hardware either manually (similar to Wikipedia) or using available "big data"
predictive analytics and machine learning techniques.

Finally, CK also help create a realistic, large, diverse, distributed, representative, and continuously evolving
benchmark with related optimization knowledge while gradually covering all possible software and hardware
to be able to predict best optimizations and improve compilers depending on usage scenarios and
requirements. Such continuously growing collective knowledge accessible via simple web service then becomes
an integral part of the practical software and hardware co-design of self-tuning computer systems!

Further information is available in the following publications (related to this TTP):

e http://arxiv.org/pdf/1506.06256v1.pdf
e http://cknowledge.org/repo/web.php?wcid=29db2248aba45e59:cd11e3a188574d80
e http://cknowledge.org/repo/web.php?wcid=report:b0779e2a64c22907

In this TTP, we have successfully applied our Collective Knowledge framework to perform systematic analysis,
data mining and online/offline learning on vast amounts of benchmarking data available at ARM.

Our technology showed good potential to automatically find various important correlations between numerous
in-house benchmarks, data sets, hardware, performance, energy and run-time state. Such correlations can, in
turn, help derive representative benchmarks and data sets, quickly detect unexpected behavior, suggest how
to improve architectures and compilers, and speed up machine-learning based multi-objective autotuning.

For example, on a realistic OpenCL application (KFusion from SLAMBench) we could increase the performance
by tenfold (10x) at the same tracking accuracy. This performance increase results in better than real-time
performance on several mobile platforms; by reducing the GPU frequency by 30%, we can reduce energy
consumption further by a similar amount, while still meeting real-time constraints.

Furthermore, our technology has also showed potential to enable collaborative and reproducible
experimentation within and across workgroups.

Finally, our positive results have motivated us to establish a UK-based startup called dividiti (http://dividiti.com)
to accelerate computer engineering and research by further developing our technology and applying it to real-
world problems.

